skip to main content


Search for: All records

Creators/Authors contains: "Adams, Fred C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent observational surveys of the outer solar system provide evidence that Neptune's distantn:1 mean motion resonances may harbor relatively large reservoirs of trans-Neptunian objects (TNOs). In particular, the discovery of two securely classified 9:1 resonators, 2015 KE172and 2007 TC434, by the Outer Solar System Origins Survey is consistent with a population of order 104such objects in the 9:1 resonance with absolute magnitudeHr< 8.66. This work investigates whether the long-term stability of such populations in Neptune’sn:1 resonances can be used to constrain the existence of distant 5–10Mplanets orbiting at hundreds of au. The existence of such a planet has been proposed to explain a reported clustering in the orbits of highly eccentric “extreme” trans-Neptunian objects (or eTNOs), although this hypothesis remains controversial. We engage in a focused computational case study of the 9:1 resonance, generating synthetic populations and integrating them for 1 Gyr in the presence of 81 different test planets with various masses, perihelion distances, eccentricities, and inclinations. While none of the tested planets are incompatible with the existence of 9:1 resonators, our integrations shed light on the character of the interaction between such planets and nearbyn:1 resonances, and we use this knowledge to construct a simple heuristic method for determining whether or not a given planet could destabilize a given resonant population. We apply this method to the currently estimated properties of Planet 9, and find that a large primordial population in the 15:1 resonance (or beyond), if discovered in the future, could potentially constrain the existence of this planet.

     
    more » « less
  2. Abstract

    Tidal heating on Io due to its finite eccentricity was predicted to drive surface volcanic activity, which was subsequently confirmed by the Voyager spacecraft. Although the volcanic activity in Io is more complex, in theory volcanism can be driven by runaway melting in which the tidal heating increases as the mantle thickness decreases. We show that this runaway melting mechanism is generic for a composite planetary body with liquid core and solid mantle, provided that (i) the mantle rigidity,μ, is comparable to the central pressure, i.e.,μ/(ρgRP) ≳ 0.1 for a body with densityρ, surface gravitational accelerationg, and radiusRP; (ii) the surface is not molten; (iii) tides deposit sufficient energy; and (iv) the planet has nonzero eccentricity. We calculate the approximate liquid core radius as a function ofμ/(ρgRP), and find that more than 90% of the core will melt due to this runaway forμ/(ρgRP) ≳ 1. From all currently confirmed exoplanets, we find that the terrestrial planets in the L 98-59 system are the most promising candidates for sustaining active volcanism. However, uncertainties regarding the quality factors and the details of tidal heating and cooling mechanisms prohibit definitive claims of volcanism on any of these planets. We generate synthetic transmission spectra of these planets assuming Venus-like atmospheric compositions with an additional 5%, 50%, and 98% SO2component, which is a tracer of volcanic activity. We find a ≳3σpreference for a model with SO2with 5–10 transits with JWST for L 98-59bcd.

     
    more » « less
  3. Abstract

    In 2018, Jewitt identified the “The Trojan Color Conundrum,” namely that Neptune's Trojan asteroids (NTs) had no ultrared members, unlike the the nearby Kuiper Belt. Since then, numerous ultrared NTs have been discovered, seemingly resolving this conundrum. However, it is still unclear whether or not the Kuiper Belt has a color distribution consistent with the NT population, as would be expected if it were the source population. In this work, we present a new photometric survey of 15 out of 31 NTs. We utilized the Sloangrizfilters on the IMACS f/4 instrument, which is mounted on the 6.5 m Baade telescope. In this survey, we identify four NTs as being ultrared using a principal component analysis. This result brings the ratio of red to ultrared NTs to 7.75:1, more consistent with the corresponding trans-Neptunian object ratio of 4–11:1. We also identify three targets as being blue (nearly solar) in color. Such objects may be C-type surfaces, but we see more of these blue NTs than has been observed in the Kuiper Belt. Finally, we show that there are hints of a color-absolute magnitude (H) correlation, with larger H (smaller sized, lower albedo) tending to be more red, but more data are needed to confirm this result. The origin of such a correlation remains an open question that will be addressed by future observations of the surface composition of these targets and their rotational properties.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    Cosmic rays produced by young stellar objects can potentially alter the ionization structure, heating budget, chemical composition, and accretion activity in circumstellar disks. The inner edges of these disks are truncated by strong magnetic fields, which can reconnect and produce flaring activity that accelerates cosmic radiation. The resulting cosmic rays can provide a source of ionization and produce spallation reactions that alter the composition of planetesimals. These reconnection and particle acceleration processes are analogous to the physical processes that produce flaring in and the heating of stellar coronae. Flaring events on the surface of the Sun exhibit a power-law distribution of energy, reminiscent of those measured for earthquakes and avalanches. Numerical lattice reconnection models are capable of reproducing the observed power-law behavior of solar flares under the paradigm of self-organized criticality. One interpretation of these experiments is that the solar corona maintains a nonlinear attractor—or “critical”—state by balancing energy input via braided magnetic fields and output via reconnection events. Motivated by these results, we generalize the lattice reconnection formalism for applications in the truncation region of magnetized disks. Our numerical experiments demonstrate that these nonlinear dynamical systems are capable of both attaining and maintaining criticality in the presence of Keplerian shear and other complications. The resulting power-law spectrum of flare energies in the equilibrium attractor state is found to be nearly universal in magnetized disks. This finding indicates that magnetic reconnection and flaring in the inner regions of circumstellar disks occur in a manner similar to the activity on stellar surfaces. These results, in turn, have ramifications for the spallation-driven injection of radionuclides in planetesimals, disk ionization, and the subsequent planetary formation process.

     
    more » « less
  5. Abstract

    The characteristic orbital period of the innermost objects within the galactic census of planetary and satellite systems appears to be nearly universal, withPon the order of a few days. This paper presents a theoretical framework that provides a simple explanation for this phenomenon. By considering the interplay between disk accretion, magnetic field generation by convective dynamos, and Kelvin–Helmholtz contraction, we derive an expression for the magnetospheric truncation radius in astrophysical disks and find that the corresponding orbital frequency is independent of the mass of the host body. Our analysis demonstrates that this characteristic frequency corresponds to a period ofP∼ 3 days although intrinsic variations in system parameters are expected to introduce a factor of a ∼2–3 spread in this result. Standard theory of orbital migration further suggests that planets should stabilize at an orbital period that exceeds disk truncation by a small margin. Cumulatively, our findings predict that the periods of close-in bodies should spanP∼ 2–12 days—a range that is consistent with observations.

     
    more » « less
  6. Abstract

    We present the DECam Ecliptic Exploration Project (DEEP) survey strategy, including observing cadence for orbit determination, exposure times, field pointings and filter choices. The overall goal of the survey is to discover and characterize the orbits of a few thousand Trans-Neptunian objects (TNOs) using the Dark Energy Camera (DECam) on the Cerro Tololo Inter-American Observatory Blanco 4 m telescope. The experiment is designed to collect a very deep series of exposures totaling a few hours on sky for each of several 2.7 square degree DECam fields-of-view to achieve approximate depths of magnitude 26.2 using a wideVRfilter that encompasses both theVandRbandpasses. In the first year, several nights were combined to achieve a sky area of about 34 square degrees. In subsequent years, the fields have been re-visited to allow TNOs to be tracked for orbit determination. When complete, DEEP will be the largest survey of the outer solar system ever undertaken in terms of newly discovered object numbers, and the most prolific at producing multiyear orbital information for the population of minor planets beyond Neptune at 30 au.

     
    more » « less
  7. Abstract

    We present here the DECam Ecliptic Exploration Project (DEEP), a 3 yr NOAO/NOIRLab Survey that was allocated 46.5 nights to discover and measure the properties of thousands of trans-Neptunian objects (TNOs) to magnitudes as faint as VR ∼ 27 mag, corresponding to sizes as small as 20 km diameter. In this paper we present the science goals of this project, the experimental design of our survey, and a technical demonstration of our approach. The core of our project is “digital tracking,” in which all collected images are combined at a range of motion vectors to detect unknown TNOs that are fainter than the single exposure depth of VR ∼ 23 mag. Through this approach, we reach a depth that is approximately 2.5 mag fainter than the standard LSST “wide fast deep” nominal survey depth of 24.5 mag. DEEP will more than double the number of known TNOs with observational arcs of 24 hr or more, and increase by a factor of 10 or more the number of known small (<50 km) TNOs. We also describe our ancillary science goals, including measuring the mean shape distribution of very small main-belt asteroids, and briefly outline a set of forthcoming papers that present further aspects of and preliminary results from the DEEP program.

     
    more » « less
  8. Abstract

    We present the methods and results from the discovery and photometric measurement of 26 bright VR > 24 trans-Neptunian objects (TNOs) during the first year (2019–20) of the DECam Ecliptic Exploration Project (DEEP). The DEEP survey is an observational TNO survey with wide sky coverage, high sensitivity, and a fast photometric cadence. We apply a computer vision technique known as a progressive probabilistic Hough transform to identify linearly moving transient sources within DEEP photometric catalogs. After subsequent visual vetting, we provide a photometric and astrometric catalog of our TNOs. By modeling the partial lightcurve amplitude distribution of the DEEP TNOs using Monte Carlo techniques, we find our data to be most consistent with an average TNO axis ratiob/a< 0.5, implying a population dominated by non-spherical objects. Based on ellipsoidal gravitational stability arguments, we find our data to be consistent with a TNO population containing a high fraction of contact binaries or other extremely non-spherical objects. We also discuss our data as evidence that the expected binarity fraction of TNOs may be size-dependent.

     
    more » « less
  9. Abstract

    The DECam Ecliptic Exploration Project (DEEP) is a deep survey of the trans-Neptunian solar system being carried out on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile using the Dark Energy Camera (DECam). By using a shift-and-stack technique to achieve a mean limiting magnitude ofr∼ 26.2, DEEP achieves an unprecedented combination of survey area and depth, enabling quantitative leaps forward in our understanding of the Kuiper Belt populations. This work reports results from an analysis of 20, 3 deg2DECam fields along the invariable plane. We characterize the efficiency and false-positive rates for our moving-object detection pipeline, and use this information to construct a Bayesian signal probability for each detected source. This procedure allows us to treat all of our Kuiper Belt object (KBO) detections statistically, simultaneously accounting for efficiency and false positives. We detect approximately 2300 candidate sources with KBO-like motion with signal-to-noise ratios > 6.5. We use a subset of these objects to compute the luminosity function of the Kuiper Belt as a whole, as well as the cold classical (CC) population. We also investigate the absolute magnitude (H) distribution of the CCs, and find consistency with both an exponentially tapered power law, which is predicted by streaming instability models of planetesimal formation, and a rolling power law. Finally, we provide an updated mass estimate for the CC Kuiper Belt ofMCC(Hr<12)=0.00170.0004+0.0010M, assuming albedop= 0.15 and densityρ= 1 g cm−3.

     
    more » « less
  10. Abstract

    We present a detailed study of the observational biases of the DECam Ecliptic Exploration Project’s B1 data release and survey simulation software that enables direct statistical comparisons between models and our data. We inject a synthetic population of objects into the images, and then subsequently recover them in the same processing as our real detections. This enables us to characterize the survey’s completeness as a function of apparent magnitudes and on-sky rates of motion. We study the statistically optimal functional form for the magnitude, and develop a methodology that can estimate the magnitude and rate efficiencies for all survey’s pointing groups simultaneously. We have determined that our peak completeness is on average 80% in each pointing group, and our magnitude drops to 25% of this value atm25= 26.22. We describe the freely available survey simulation software and its methodology. We conclude by using it to infer that our effective search area for objects at 40 au is 14.8 deg2, and that our lack of dynamically cold distant objects means that there at most 8 × 103objects with 60 <a< 80 au and absolute magnitudesH≤ 8.

     
    more » « less